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We explore the possibilities of enforcing and preventing consensus in continuous opinion
dynamics that result from modifications in the communication rules. We refer to the
model of Weisbuch and Deffuant, where n agents adjust their continuous opinions as
a result of random pairwise encounters whenever their opinions differ not more than a
given bound of confidence ε. A high ε leads to consensus, while a lower ε leads to a frag-
mentation into several opinion clusters. We drop the random encounter assumption and
ask: How small may ε be such that consensus is still possible with a certain communica-
tion plan for the entire group? Mathematical analysis shows that ε may be significantly
smaller than in the random pairwise case. On the other hand, we ask: How large may ε
be such that preventing consensus is still possible? In answering this question, we prove
Fortunato’s simulation result that consensus cannot be prevented for ε > 0.5 for large
groups. Next, we consider opinion dynamics under different individual strategies and
examine their power to increase the chances of consensus. One result is that balancing
agents increase chances of consensus, especially if the agents are cautious in adapting
their opinions. However, curious agents increase chances of consensus only if those agents
are not cautious in adapting their opinions.

Keywords: Continuous opinion dynamics; bounded confidence; communication structure;
balancing agents; curious agents.

1. Introduction

What happens if people meet and discuss their opinions regarding a political party,
a brand, or a new product? Generally, when people meet they influence one another
and as a consequence may change their opinions. Such opinion formation processes
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are at the heart of models that explain voting behavior as well as models of inno-
vation diffusion (see, for instance, Ref. 1).

If people who are assumed to have opinions toward something meet and discuss,
they may adapt their opinions towards the other agent’s opinion and reach a com-
promise, they may move away from consensus when their initial positions are too
different, or they could ignore each other. For simplification, we only consider one-
dimensional opinions such that they can be represented by real numbers between
zero and one. We will only examine compromising agents under bounded confidence,
which implies that individuals who differ too much in their opinions do not affect,
and thus ignore, each other. This assumption mirrors the psychological concept
of selective exposure, where people tend to perceive their environment in favor of
their own opinions and thereby avoid communication with people with conflicting
opinions. However, if agents do not ignore each other, then they get closer in their
opinions. Such systems of agents, who update their opinions via averaging with
other sufficiently similar opinions, are referred to as systems of continuous opinion
dynamics under bounded confidence. Models following this paradigm have been pro-
posed by Hegselmann and Krause [2,3] and Weisbuch, Deffuant, and others [4,5]. In
the Hegselmann and Krause model (HK model) every agent perceives the opinions
of every other agent and builds his new opinion as an average of sufficiently close
opinions. Thereby, Hegselmann and Krause added the assumption of bounded con-
fidence to a previous linear opinion dynamics model by DeGroot [6,7]. Hegselmann
and Krause’s main question was what conditions related to the bounded confidence,
in other words the degree of open mindedness, were necessary for a consensus to
be reached.

While for Hegselman and Krause all agents interact simultaneously, the agents
in the model by Weisbuch and Deffuant (WD model) engage in random pairwise
encounters. Several other extensions (e.g. in Ref. 8) and a combination of both
models, the HK model and the WD model [9], have been analyzed. A model which
includes the centrifugal forces of rejecting agents has been proposed by Jager [10].
Opinion dynamics models have also been examined in incompletely linked networks,
for instance, in scale-free networks [11, 12].

While the conditions necessary for consensus have already been examined
regarding the bounded confidence, we will explore conditions affecting the rules
of communication in the sense of who talks with whom. Even if we regard a com-
pletely linked society as given and thus look at the WD model, this model has
an unexplored free parameter in the order of who communicates with whom at
what time. We will call rules that modify this order the communication regime.
Studying this parameter is the aim of this paper. Considering the complexity of
human organizations and the different institutions that foster or manipulate the
communication regime makes immediately clear why this question is of relevance.
We will see that, although the bounds of confidence have a significant impact, also
the factors that control the communication regime significantly affect the emer-
gence of consensus or dissent. Thus, our two leading questions are: To what extent
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does the communication regime matter? Do individual communication rules, like
being balancing or being curious, matter? To focus our analysis, we concentrate on
possibilities and strategies to foster or prevent consensus.

The above-mentioned models on opinion dynamics, i.e. the WD model and the
HK model, were previously studied with the more general technique of differential
equations on density based state spaces instead of single agents in finite popula-
tions [13–15]. However, we will apply these questions to populations of finite size,
more precisely, less than one thousand members. This prevents us from using such
general techniques that abstract from single agents. Nevertheless, it is interesting
because it is a more realistic assumption. The model assumes a completely mixed
population where everybody has the same chance of interacting with everybody
else. However, in human societies the size of groups, where one can reasonably
assume a complete mixing, does not scale arbitrarily. For instance, Zhou et al. [16]
and Hill and Dunbar [17] argue that some group sizes are more frequently observed
than others and that at a certain critical number, groups exhibit significantly differ-
ent properties in, for instance, their communication patterns. The organizational
literature also suggests that beyond critical sizes, hierarchies will be established.
Furthermore, the distribution of people across different geographical locations also
restricts the set of potential interaction partners. All these aspects suggest that for
very large systems the assumption of completely mixed societies is strongly vio-
lated. We believe that these arguments demonstrate the necessity of investigating
finitely sized groups if one sticks to the complete mixing assumption.a Although
finite size is often associated with a difficult analysis, we will demonstrate that
for opinion dynamics this approach in some circumstances still lends itself to an
analytical approach.

After a short introduction of the Weisbuch and Deffuant model, we answer
the question concerning the extent to which the communication regime is able to
enforce or prevent consensus. We will see that the results of Deffuant, Weisbuch,
and others are not robust against manipulation of the communication order. The
result on preventing consensus supports Fortunato’s claim of universality of the
threshold for complete consensus [11]. Fortunato provides simulation-based evidence
that consensus is reached for ε > 0.5 irrespective of the structure of an underlying
connected social network. Our result will explicitly define a threshold such that
for larger bounds of confidence consensus cannot be prevented. In this way, the
simulation results by Fortunato are formally proved without any simulation, but
in the limit of large numbers of agents and uniformly distributed initial opinions.
However, we also show how the result differs for populations of different finite sizes.

aOne should be aware that research regarding certain social and economic phenomena are only
based on the assumption of finite sizes, e.g. theory on competition among firms. In fact, the infinite
size assumption may sometimes represent the most uninteresting case. As such, we suggests that
in the social sciences the infinite size assumption should not be treated as the undiscussed default.
At the very least, a justification that violating the finite size assumption does not cause a major
change in system behavior is critical.
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For instance, for ε below a specific level there is a zero probability of consensus in
finite populations, while the level depends on the groups size and the cautiousness
of agents.

The communication regime we construct in Sec. 3 to reach the extreme bounds
for preventing and enforcing consensus relies on full knowledge of the opinions of all
agents. To circumvent this, in Sec. 4 we run a simulation analysis with individual
strategies, where agents are either balancing or curious. This only requires that
agents know their individual recent communication history. “Balancing” means
that an agent who has talked with somebody who has a higher opinion seeks later
on somebody with a lower one. “Curious” means that agents seek partners with
opinions in the same direction as those of their former communication partners.
Particularly, the interplay of these strategies with the cautiousness that agents
exhibit is interesting. We will see that these very simple communication strategies,
which could reasonably be applied by humans, can significantly increase the chances
for consensus.

2. Dynamics of Continuous Opinions

We analyze the model of continuous opinion dynamics that was introduced by
Weisbuch, Deffuant, and others [4,5]. The dynamics are driven by random encoun-
ters of two agents, who compromise if their distance in opinions is below a certain
bound of confidence ε. The model always converges to a stabilized opinion forma-
tion, where agents in the same cluster have the same opinion in the long run [18].

We consider n ∈ N agents, who each have an opinion that is represented by a real
number. The opinion of agent i ∈ n := {1, . . . , n} at timestep t ∈ N0 is represented
by xi(t) ∈ R. We call the vector x(t) ∈ R

n the opinion profile at timestep t.

Definition 1 (WD Model). Given an initial opinion profile x(0) ∈ R
n, a bound

of confidence ε ∈ R>0, and a cautiousness parameterb µ ∈]0, 0.5] we define the
WD model as a process of opinion dynamics as the random process (x(t))t∈N0 that
chooses in each timestep t ∈ N0 two agents i and j randomly and equally distributed
from the set of agents n. Agents i and j perform the action

if |xi(t) − xj(t)| < ε

xi(t + 1) = (1 − µ)xi(t) + µxj(t),

xj(t + 1) = µxi(t) + (1 − µ)xj(t),

else

xi(t + 1) = xi(t), xj(t + 1) = xj(t).

The bound of confidence ε was previously shown to be the most significant
parameter to control the number of emerging clusters. For randomly distributed
initial profiles with opinions between zero and one x ∈ [0, 1]n and n = 1000 it is

bThis parameter is called convergence parameter in Ref. 4.
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shown via simulations that consensus is reached in nearly every case for ε > 0.3 [4].
For lower ε, the usual outcome is polarization into a certain number of opinion
clusters. Weisbuch, Deffuant et al. derived by computer simulation the “1/2ε-rule,”
which states that the number of surviving clusters is roughly the integer part of
1/2ε.c

The cautiousness parameter µ had been considered to have no effect on cluster-
ing in the basic model (only on convergence time) [4, 5]. However, there is already
some evidence that µ can affect the clustering as well as that the effect of µ inter-
acts with other parameters, e.g. number of agents that participate in an inter-
action [9, 19]. Furthermore, different random initial profiles may lead to different
numbers of clusters, and even the same initial profile may lead to different numbers
of clusters for different random choices of communicating pairs. In most previous
studies, the dependence on the initial profile and on the communication regime
is not considered due to the randomness assumption. In the next section, we will
incorporate both initial opinion profile and communication regime to examine the
bounds for enforcing and preventing consensus.

3. Enforcing and Preventing Consensus

In this section, we give mathematical answers to the questions: How small may ε

be such that enforcing consensus is still possible? How large may ε be such that
preventing consensus is still possible?

Let our initial opinion profile x(0) and the parameter µ be fixed. We define εlow

as the smallest value of epsilon for which there is a communication regime that leads
to a consensus. Obviously, εlow depends on the initial opinion profile and perhaps
on µ. We will give a lower and an upper limit for εlow based on a communication
regime that looks like a phone chain of those people with the most similar opinions,
or in other words a phone chain of closest.

For our approximation, we must take a detailed look at the initial opinion profile.
For this reason, we regard our initial opinion profile x(0) as ordered such that
x1(0) ≤ · · · ≤ xn(0), without loss of generality. For our considerations, it is useful
to look at the gaps between the opinions. We define for i ∈ n − 1 the gap to
the next neighbor as ∆xi(t) := xi+1(t) − xi(t). If we regard an opinion profile as
a function x(·)(t) : n → R then we can consider ∆x(t) ∈ R

n−1 as the discrete
derivative of x(t) with respect to the agent index i. ∆ is thus not a differential
but a difference operator. For abbreviation, we further define the maximal gap
max∆x := maxi∈n ∆xi. In our setting with ordered initial opinions, the function
x(·)(0) is monotonously increasing. Thus, its difference function ∆x(·)(0) is non-
negative.

cVery small surviving clusters are neglected by this rule, but their existence is systematic as shown
by the analysis of a rate equation for the density of opinions [13].
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We are now able to define the phone chain of closest as a communication regime,
which will later on guide us to a fair approximation of εlow.

Definition 2 (Phone Chain of Closest). Let n ∈ N be the number of agents.
A WD model of opinion dynamics is ruled by a phone chain of closest if the commu-
nicating agents at timestep t ∈ N are (t mod (n−1))+1 and (t mod (n−1))+2.

The phone chain of closest is (1, 2), (2, 3), (3, 4), . . . , (n−1, n), (1, 2), and so forth.
This sequencing communication strategy provides a nice proof for the following
proposition.

Proposition 1. Let x(0) ∈ R
n be an ordered initial profile and let µ ∈]0, 0.5]. It

holds that

max∆x(0) ≤ εlow ≤ max
i∈n−1

i−1∑
j=0

µj∆xi−j(0). (1)

For a proof, see Appendix A.1. Figure 1 shows how the phone chain of closest
works.d

If we define range(x) =
∑

i∈n−1 ∆xi = xn − x1 and �·� as rounding a real value
to the upper integer, then we can derive a corollary with a simpler, but not as
sharp, bound.

Corollary 1. If Proposition 1 holds, then it also holds that

εlow ≤ 1 − µ� range(x(0))
max ∆x(0) �

1 − µ
max∆x(0). (2)

For a proof, see Appendix A.2.
From Corollary 1, one can see that εlow is determined mostly by the maximal

gap, µ, and the ratio of the maximal gap and the difference between the two most
extreme opinions in the initial profile. For µ = 0.5, the estimate shows that enforcing
consensus is always possible for ε which is twice the maximal gap of the initial
profile.

Simulation-based studies often use initial profiles x(0) ∈ [0, 1]n with random and
uniformly distributed opinions. The length of the maximal gap in such a profile can
be estimated by Whitworth’s formula (3) and is thereby dependent on the number
of agents:

P (max ∆x > ε) =
� 1

ε �∑
k=1

(−1)k+1(1 − kε)n−1

(
n

k

)
. (3)

In terms of statistical theory, the formula is about the spacings in an order
statistics of n independent uniformly distributed random variables [20]. Figure 2
shows the probability that the maximal gap is larger than ε with ε ∈ [0, 1].

dWe suspect that our estimate is not strict, because we also studied regimes other than the phone
chain of closest. However, the phone chain of closest delivers the best result we are able to prove
analytically. Still, the question of the strictly lowest εlow remains open.
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Fig. 1. The phone chain communication regime of closest.
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Fig. 2. P (max∆x > ε) for random equally distributed x ∈ Rn for some n.

Based on this distribution, it is possible to derive an estimate for the expected
size of the maximal gap in an initial opinion profile. But there is an additional insight
here: the larger the population, the smaller the expected size of the maximal gap.
This leads to the conclusion that, for a very large number of agents who are equally
distributed, consensus is possible for extremely low values of ε. If we assume that the
maximal gap converges to zero as the number of agents increases, then it is possible
to reach consensus for every ε with a sufficiently large number of agents. However,
reasoning for infinitely many agents is not appropriate since every real society is
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finite in size. This finite size assumption is where many analytic approaches reach
their limit.

We now ask the other way around: How large may ε be such that preventing
consensus is still possible? At first we see that this question is not detailed enough
to be interesting. Preventing consensus is obviously possible if we forbid one agent
to communicate with all others, e.g. by underlying a disconnected social network.
A better question is: How high may ε be such that preventing consensus is still
possible, even if we switch at some timestep to an arbitrary communication regime?
The biggest possible ε is called εhigh.

Proposition 2. Let x(0) ∈ R
n be an ordered initial profile and let 0 < µ < 0.5.

Then,

εhigh = max
k∈n−1


 1

n − k

n∑
i=k+1

xi(0) − 1
k

k∑
j=1

xj(0)


 . (4)

For a proof see Appendix A.3 and Lemma 1, which states that the mean opinion
is conserved by the process of opinion formation.

If we regard random and uniformly distributed xi(0) ∈ [0, 1] for an n approach-
ing infinity, then εhigh is computed as the distance of the central points of two
arbitrary disjoint intervals whose union is [0, 1]. Thus, εhigh → 0.5 as n → ∞. This
proves Fortunato’s universality result [11] by showing that preventing consensus is
impossible for a large enough number of connected agents for ε > 0.5. Furthermore,
Fortunato delivers evidence that consensus is not possible for ε < 0.5 as n → ∞
and random pairwise communication regardless of an underlying network topology.
Proposition 1 shows that there are specific communication orders that lead the soci-
ety to consensus even for very low values of ε for every finite but arbitrarily large
number of agents. However, the probability of obtaining one of these consensus-
enforcing communication orders when picking it out of the set of random pairwise
communication orders would probably approach zero in the limit of large n. Hence,
if we are free to choose or to influence the communication order, then Fortunato’s
claim that consensus is not possible for ε < 0.5 is disproved. It remains to prove the
impossibility of consensus for ε < 0.5 under random pairwise communication in the
sense that our consensus-enforcing communication orders approach a probability of
zero as n increases.

The interval [εlow, εhigh] is the range where both enforcing and preventing con-
sensus is possible with an appropriate communication regime. Both bounds of the
interval depend on the initial profile x(0). Figure 3 provides some numerical evi-
dence about the possibilities that can be reached with manipulation of the commu-
nication regime. The data in line one come from Fig. 4 in Ref. 4 (visually extracted)
with 250 simulation runs with random and equally distributed initial profiles and
n = 1000. For line two, we took 250 randomly chosen and equally distributed pro-
files with n = 1000 and show the maximal εlow and minimal εhigh that occurred in
all 250 profiles (all computed with Propositions 1 and 2). Enforcing and preventing
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Fig. 3. Numerical [εlow, εhigh] (second darkest gray) where consensus and polarization occurs (1)
and is possible (2 and 3).

consensus was possible in the displayed interval for all 250 selected profiles. The
same is true in line three for n = 200.

From this figure, we can also see that for finite populations and random initial
profiles avoiding consensus is possible even for ε > 0.5 (in contrast to Fortunato).
The larger the population, the smaller ε can be while still guaranteeing the possi-
bility of consensus. The larger the population, the smaller the upper limit of ε for
which consensus can be prevented is.

4. Individual Strategies that Increase Chances for Consensus

In the previous section, we applied a mechanism for enforcing consensus that was
built on knowledge about all people’s opinions. We now want to leave behind this
idea of global knowledge and the great master plan for communication and go to
agent-based strategies, which may also promote consensus. Our agents do not know
the opinions of all other agents and thus do not know if they are in the center or
at the extremes of the opinion space. The agents follow rules that only require
knowledge of their own communication history.

4.1. Balancing and curious agents with directions

From the huge set of possible individual communication strategies, we focus on bal-
ancing and curious agents. Consider an agent who has communicated with another
agent and adapted his opinion accordingly. A balancing agent will now search for
an agent whose opinion is contrary to that of the previous communication partner,
while ignoring all other agents. A curious agent will instead seek out a new commu-
nication partner whose opinion is in line with that of the previous communication
partner, again ignoring other agents.

To prevent agents from not finding an agent to compromise with, we introduce a
new parameter, fmax, which represents a maximal level of frustration. Specifically, it
is the number of unsuccessful attempts an agent sticks to the rule before abandoning
it. Thus, agents are not forced to follow the strategies forever. We store relative
opinions of potential communication partners, more precisely, the direction, and
individual frustration levels for all agents in a vector d ∈ Z

n. If di is negative, then
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agent i wants to compromise with an agent with a lower opinion. If di is positive,
then agent i wants to compromise with an agent with a higher opinion. If di is zero
agent i has no preferred direction. The absolute values of the directions represent
the frustration level. The lower the absolute value, the higher the frustration is;
if it reaches zero, then the agents no longer care about the direction of potential
communication partners.

Frustration and direction are additional factors that affect an agent’s tendency
to compromise. Agents i and j only compromise if both agents’ opinions are in
the corresponding set of opinions the other agent looks for, i.e. di ∗ dj ≤ 0. If they
are not in the set, but are closer than ε to each other, then they both reduce the
absolute value of their frustration levels each by one point. Thus, the absolute values
of di and dj decrease. After a successful compromise, agents set di to fmax with
the sign indicating the new search direction. Curious agents differ from balancing
agents in the sign of di. Besides this restriction, we return to random pairwise
communication. The corresponding pseudo-code can be found in Appendix B.

Societies of balancing and curious agents are essentially identical in their dynam-
ics if µ = 0.5. It is interesting to note that after a compromise between two balancing
agents, we end up with two agents with the same opinion searching in opposite direc-
tions; however, the same applies to curious agents but with agents whose indices
are reversed. Thus, clustering outcomes are identical for both balancing and curious
agents when µ = 0.5.

4.2. Simulation setup

For both strategies, balancing and curious agents, we ran simulations for the values
µ = 0.2, 0.5, n = 50, 100, 200, ε = 0, +0.01. . . , 0.35, and fmax = 0, 1, 2, 4, 8, 16, 32. For
each point in this parameter space, we have 3000 independent simulation runs with
random initial profiles and random selection of communication partners.e

Each simulation run stops when we reach a configuration where all indirectly
connectedf subgroups of agents have a maximal opinion difference smaller than
ε and thus cannot further split. The mean preserving property (see Lemma 1 in
Appendix A.3) of the dynamics permits a calculation of the long term limit of
the convergence process. We consider the average size of the biggest cluster after
stabilization as a measure for the possibility of consensus.g All simulations were
implemented using ANSI-C. The program code is available on request from the
second author.

eTo check larger numbers of agents, we performed 3000 independent simulation runs for balancing
agents for n = 500, 1000, ε = 0, +0.01. . . , 0.35, µ = 0.2, 0.5, and fmax = 0, 1, 2, 4, 8.
fTwo agents are connected if their opinions differ by not more than ε. They are indirectly connected
if there is a chain of connected agents between them.
gAnother possible measure would be the average number of clusters. But the Weisbuch and Def-
fuant model is known to produce minor clusters of only a few agents [13, 21].
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Fig. 4. The average size of the biggest cluster for initial profiles with 50, 100, 200, 500 and 1000
agents (top-left) and µ = 0.5, for 200 balancing/curious agents with µ = 0.5 (top-right), for 200
balancing agents with µ = 0.2 (bottom-left), and 200 curious agents with µ = 0.2 (bottom-right).

4.3. Simulation results

Figure 4 shows the results for the average size of the biggest cluster. The thick line
always represents the average size of the biggest cluster for fmax = 0 and n = 200.
The upper-left plot shows how this line changes for varying numbers of agents. The
plateau at ε = 0.2 shows the characteristic polarization phase where agents form
two big clusters (see, for instance, Ref. 4). We see that this plateau becomes more
pronounced for larger n and less distinct for smaller n.h

hThe small “hill” at ε = 0.19 for n = 500, 1000 is another interesting phenomenon related to the
measure of the average size of the biggest cluster, but it is beyond the scope of this paper.
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Next, we examine how the transition from polarization to consensus shifts to
other ε-regions when agents are balancing or curious. We concentrate our discussion
on the case of 200 agents, but we checked that the shifts for n = 50, 100, 500, 1000
are similar.i

The upper-right plot in Fig. 4 shows the effect of balancing and curious agents
for µ = 0.5, in which case these two types exhibit the same dynamics. In the
lower plots, we distinguish between balancing and curious for agents who are more
cautious, i.e. µ = 0.2. The thin lines show the effects of an increase in the maximal
frustration fmax under a given strategy and µ. The main conclusions from Fig. 4
are: Being balancing has a positive effect on the chances for consensus. For µ = 0.5,
this holds for all maximal frustrations fmax > 1. The same holds trivially for curious
agents under µ = 0.5. A smaller µ, which means being more cautious, supports the
positive effects for balancing agents. However, a smaller µ does not support the
positive effects of curious agents.j

Figure 4 is based on aggregated data. To give a more detailed picture of the
dynamics, Figs. 5 and 6 show some single simulation runs. Figure 5 shows how bal-
ancing agents with an intermediate frustration maximum are positively effected in
finding a consensus by being more cautious. Figure 6 shows the ambivalent effects
of curious agents who are cautious. While a high frustration maximum can foster
consensus, an intermediate frustration maximum may even prevent consensus. We
see that almost every curious agent has to cross the central opinion if curious agents
want to reach a consensus. Figures 5 and 6 also demonstrate the fact that consensus
due to balancing or curious agents is paid by longer convergence time.

5. Discussion

Our analytical results describe the possibilities of consensus in the Weisbuch and
Deffuant model and we prove the universality of the consensus threshold in the
sense of Fortunato [11]. Both enforcing and preventing consensus is possible in a
large interval for values of ε, and we give an impression of how it scales with the
number of agents and the cautiousness parameter. This shows the large impact
that the control of communication has on consensus formation in the Weisbuch
and Deffuant model in finite populations. Communication control is a feature of
real opinion dynamics, which is to some extent manipulable through organizations.
Therefore, our results are of interest for those who aim at designing communication
and discussion processes and want to foster consensus or dissent (see, for example,
Ref. 22).

iData for n = 50, 100, 500, 1000 are available on request from the second author.
jAn interesting but small effect is that the general tendency of an increase in chances of consensus
with an increase in fmax is sometimes slightly violated. For instance, for balancing agents with
µ = 0.2 and fmax = 16, we observe a slightly larger average size of the biggest cluster than for
fmax = 32. We suspect that this is a systematic effect and not caused by chance. However, the
effect is so small that we did not study the causes further.
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Fig. 5. Example processes for balancing agents with n = 200 and ε = 0.25. This demonstrates
that cautiousness fosters the positive effect of balancing.

Generally, continuous opinion dynamics under bounded confidence is driven by
the opposition of the consensus-promoting force of averaging and the separating
force of bounded confidence. Dynamics start at the extremes of the opinion space.
Specifically, the most extreme agents move towards less extreme positions and thus
higher densities of opinions evolve at both extremes. These two high density regions
attract agents from the center and may lead to a split in the opinion range.

We explored by simulation the dynamics of societies where each individual
behaves as “balancing” or “curious.” Balancing agents tend to move in a narrow
zigzag around their first opinion, while curious agents tend to move in a wide zigzag
exploring almost the whole opinion space. Therefore, both strategies have a ten-
dency to prevent a rapid clustering. Balancing agents do this by seeking input from
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Fig. 6. Example processes for curious agents with n = 200 and µ = 0.2. This demonstrates that
for cautious agents being curious with a high frustration level one can foster consensus (left-hand
side) but for a low frustration level it may destroy consensus (right-hand side).

both sides, which prevents them from quickly being absorbed by a nearby cluster.
Curious agents tend to run through and finally break out of a cluster they recently
joined. They tend to explore more of the opinion space. Since only the clustering is
slowed down, while the overall contraction process of the opinion profile maintains
its speed, the chances for consensus are increased.

We further extend the analyses in Refs. 9 and 19 on the role of the cautiousness
parameter µ. Particularly in the first part of this paper, we see that cautiousness
significantly controls the possibility of consensus. Furthermore, the second part of
the paper illustrates the intriguing interplay of this parameter with agents’ com-
munication strategies.
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To summarize, if you want your agents to foster consensus by balancing, you
should appeal to them to be cautious. If you want them to foster consensus by being
curious, you should appeal to them not to be cautious, otherwise you may even get a
negative effect when agents have a low frustration maximum. This results from the
fact that balancing agents prevent clustering by trying to avoid early absorption into
clusters and thus smaller steps, i.e. smaller µ has a positive effect on formation of
consensus. Curious agents prevent clustering by getting out of clusters they recently
entered; hence, smaller steps have a negative effect. In general, the impact of being
balancing is higher than that of being curious, yet both individual strategies can
foster consensus.

Appendix A. Appendix for Proofs

A.1. Proof of Proposition 1

Proof. The left inequality results from the fact that an ε < maxi∈n−1 ∆xi(0) can
obviously not bridge the maximal gap; thus, the opinion profile will be divided into
the two groups above and below this gap forever, regardless of any communication
structure.

To show the right inequality, let ε > maxi∈n−1

∑i−1
j=0 µj∆xi−j(0). We will show

that our specific communication regime, the phone chain of closest, drives the
dynamic to a consensus.

First, the phone chain of closest cannot change the order of the opinion profile.
Thus, it holds for all t ∈ N0 that x1(t) ≤ · · · ≤ xn(t).

In a first step, we will look at the n − 1 first timesteps, thus the first phone
chain round. After one round, we will see that the maximal gap in ∆x(n − 1) has
shrunk substantially, and we can conclude with an inductive argument.

Let us consider that there is no bounded confidence restriction by ε, thus in
every timestep two opinions really change (if they are not already equal). We will
derive equations for ∆x in the timesteps 1, . . . , n− 1 under this assumption. After
that, we will see that ε does not restrict this dynamic.

Let i ∈ n − 1 be an arbitrary agent. We focus on ∆xi, the gap between i and
i + 1, for all timesteps and deduce formulas only containing values of the initial
profile. Agent i at timestep i − 1 has communicated recently with agent i − 1 and
will communicate with agent i + 1. Thus

∆xi(i − 2) = · · · = ∆xi(1) = ∆xi(0). (A.1)

Due to the communication with agent i − 1, agent i moves towards i − 1 thus ∆xi

gets larger:

∆xi(i − 1) = ∆xi(i − 2) + µ∆xi−1(i − 2). (A.2)
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By recursion of (A.1) and (A.2), it follows that

∆xi(i − 1) = ∆xi(0) + µ∆xi−1(0) + · · · + µi−2∆x2(0) + µi−1∆x1(0)

=
i−1∑
j=0

µj∆xi−j(0). (A.3)

Going one step further to the communication of i and i + 1, where their opinion
gets closer, we get the following:

∆xi(i) = ∆xi(i − 1) − 2µ∆xi(i − 1). (A.4)

We use ∆xi(i − 1) as an abbreviation for the right-hand side of (A.3) which only
contains expressions at timestep 0.

In the next step, ∆xi becomes larger as agent i + 1 moves towards agent i + 2:

∆xi(i + 1) = ∆xi(i) + µ∆xi+1(i)
(A.4)(A.2)

= (1 − 2µ)∆xi(i − 1) + · · · + µ(∆xi+1(i − 1) + µ∆xi(i − 1))
(A.1)
= µ∆xi+1(0) + (1 − 2µ + µ2)∆xi(i − 1). (A.5)

To complete all timesteps until t = n − 1, we have to mention

∆xi(i + 1) = ∆xi(i + 2) = · · · = ∆xi(n − 1). (A.6)

For ∆xn−1, there is no Eq. (A.5); the last value after the phone chain round is
computed by Eq. (A.4).

To make all these equations valid and thus to ensure that no opinion change
is prevented by ε, it must hold for all i ∈ n − 1 that ∆Xi(i − 1) < ε. Looking at
(A.3), we see that this is the case by construction of the lower bound of ε.

From Eqs. (A.3), (A.5) and (A.6), we get

∆xi(n − 1) = µ∆xi+1(0) + (1 − 2µ + µ2)
i−1∑
j=0

µj∆xi−j(0)

≤

µ + (1 − 2µ + µ2)

i−1∑
j=0

µj


max∆x(0)

=
(

µ + (1 − µ)2
(1 − µi)
1 − µ

)
max∆x(0)

= (1 − µi + µi+1)max ∆x(0). (A.7)

Thus, it holds that max∆x(n − 1) ≤ (1 − µi + µi+1)max ∆x(0). It is easy to
see that k := 1 − µi + µi+1 < 1 for 0 < µ < 1.

For the next phone chain rounds, we can conclude with the same procedure and
it will hold that max∆x(t(n − 1)) ≤ kt max ∆x(0). Thus, max∆x(t) converges to
zero, which implies that the process converges to a consensus.
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A.2. Proof of Corollary 1

Proof. With abbreviation x := x(0), we use the equations range(x) =
∑n−1

i=1 ∆xi

to derive range(x) ≤ � range(x)
max∆(x)�max∆x. This gives

n−1∑
i=1

∆xi ≤
� range(x)

max ∆(x) �∑
i=1

max ∆(x) (A.8)

and therefore

εlow ≤ max
i∈n−1

i−1∑
j=0

µj∆xi−j ≤
� rangex

max ∆(x) �∑
i=0

µi−1 max∆(x). (A.9)

Taking the right-hand side of (A.8) and transforming it to 1−µ� range(x)
max∆x

�

1−µ max∆x

finally provides us with Corollary 1.

A.3. Proof of Proposition 2

Lemma 1. Let x(0) ∈ R
n be an initial profile and (x(t))t∈N0 be a process in a WD

model of opinion dynamics with arbitrary ε, µ. For every timestep t ∈ N0, it holds
that

1
n

n∑
i=1

xi(t) =
1
n

n∑
i=1

xi(0). (A.10)

Proof. Obvious by Definition 1.

Proof of Proposition 2. Let ε ≤ εhigh. Let us divide the set of agents according
to the maximal k in Eq. (4) into two subsets I1 = {1, . . . , k}, I2 = {k+1, . . . , n}. We
choose a communication regime where both subgroups find their respective consen-
sus x1 = · · · = xk = c1, xk+1 = · · · = xn = c2. This should be possible, otherwise
we are have established a persistent dissence. Due to Lemma 1 and Eq. (4), it holds
that |c1 − c2| ≥ ε and communication is no longer possible between the subgroups.

B. Appendix for Pseudo Code

For balancing agents, we use:

1: initialize X[]

2: initialize D[] = (0,0,...,0)

3: WHILE not clustered(X) AND changes possible

4: choose agent i,j

5: IF |X[i]-X[j]| <= epsilon
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6: IF (X[j]-X[i])*D[i] >= 0 AND (X[j]-X[i])*D[i] >= 0

7: X[i]=X[i] - mu*(X[i]-X[j])

8: X[j]=X[j] + mu*(X[i]-X[j])

9: D[i] = + sign(X[i]-X[j]) * fmax

10: D[j] = - sign(X[i]-X[j]) * fmax

11: ELSE

12: IF D[i]!=0
13: D[i]= D[i] - sign(D[i])

14: ENDIF

15: IF D[j]!=0

16: D[j]= D[j] - sign(D[j])

17: ENDIF

18: ENDIF

19: ENDIF

20: ENDWHILE

For curious agents, we use same code with signs switched in lines nine and ten.
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